Kambhu et al. “Developing slow-release persulfate candles to treat BTEX contaminated groundwater.” Chemosphere 89 (2012), 656-664
Abstract
The development of slow-release chemical oxidants for sub-surface remediation is a relatively new technology. Our objective was to develop slow-release persulfate-paraffin candles to treat BTEX-contaminated groundwater. Laboratory-scale candles were prepared by heating and mixing Na2S2O8 with paraffin in a 2.25 to 1 ratio (w/w), and then pouring the heated mixture into circular molds that were 2.38 cm long and either 0.71 or 1.27 cm in diameter. Activator candles were prepared with FeSO4 or zerovalent iron (ZVI) and wax. By treating benzoic acid and BTEX compounds with slow-release persulfate and ZVI candles, we observed rapid transformation of all contaminants. By using 14C-labeled benzoic acid and benzene, we also confirmed mineralization (conversion to CO2) upon exposure to the candles. As the candles aged and were repeatedly exposed to fresh solutions, contaminant transformation rates slowed and removal rates became more linear (zero-order); this change in transformation kinetics mimicked the observed dissolution rates of the candles. By stacking persulfate and ZVI candles on top of each other in a saturated sand tank (14 × 14 × 2.5 cm) and spatially sampling around the candles with time, the dissolution patterns of the candles and zone of influence were determined. Results showed that as the candles dissolved and persulfate and iron diffused out into the sand matrix, benzoic acid or benzene concentrations (Co = 1 mM) decreased by >90% within 7 d. These results support the use of slow-release persulfate and ZVI candles as a means of treating BTEX compounds in contaminated groundwater.
Christenson et al. “Using slow-release permanganate candles to remove TCE from a low permeable aquifer at a former landfill.” Chemosphere 89 (2012), 680-687
Abstract
Past disposal of industrial solvents into unregulated landfills is a significant source of groundwater contamination. In 2009, we began investigating a former unregulated landfill with known trichloroethene (TCE) contamination. Our objective was to pinpoint the location of the plume and treat the TCE using in situ chemical oxidation (ISCO). We accomplished this by using electrical resistivity imaging (ERI) to survey the landfill and map the subsurface lithology. We then used the ERI survey maps to guide direct push groundwater sampling. A TCE plume (100–600 μg L−1) was identified in a low permeable silty-clay aquifer (Kh = 0.5 m d−1) that was within 6 m of ground surface. To treat the TCE, we manufactured slow-release potassium permanganate candles (SRPCs) that were 91.4 cm long and either 5.1 cm or 7.6 cm in dia. For comparison, we inserted equal masses of SRPCs (7.6-cm versus 5.1-cm dia) into the low permeable aquifer in staggered rows that intersected the TCE plume. The 5.1-cm dia candles were inserted using direct push rods while the 7.6-cm SRPCs were placed in 10 permanent wells. Pneumatic circulators that emitted small air bubbles were placed below the 7.6-cm SRPCs in the second year. Results 15 months after installation showed significant TCE reductions in the 7.6-cm candle treatment zone (67–85%) and between 10% and 66% decrease in wells impacted by the direct push candles. These results support using slow-release permanganate candles as a means of treating chlorinated solvents in low permeable aquifers.