Specialty Earth Sciences Project
Summary:
Full Scale Treatment of
Heterogeneous Source Zone Area
2-Stage Approach
(Savannah, Georgia)
Full-Scale Source Zone Treatment

- Client seeking remedial alternatives for operating commercial laundry facility
- Heterogeneous source zone area treatment
- Site operations required:
 - **Rapid implementation**
 - **Second shift access only**
 - **All equipment and materials cleared daily prior to first shift workers reporting for duty**
Site Layout

Target area
Treatment Area Schematic

- GW Flow Direction

SOCORE LOCATIONS
DIRECT PUSH BORINGS

(25) SOCORE points
3 ft. spacings between points
12-20 ft. bgs. target interval
75 ft. linear length

= SOCORE Direct Push Installation Point
■ = SOCORE Product Observation Piezometer
to measure permanganate concentrations
over time (PZ-#)
□ = 2-inch Temporary Performance Monitoring Well
(GB-#)
Site Specific Characteristics

• **CVOC’s**: PCE, TCE, DCE, VC

• **Geological features**: Sandy aquifer underlain by clays

• **2-stage remedial approach**:
 1. liquid injection via DPT
 2. followed by SOCORE Cylinder and Sphere installation via DPT tooling
Step 1: Liquid Injection

• Top-down liquid injection:
 - Soften source zone CVOC mass
 - Lessen demand on SOCORE material
• 10% NaMnO₄
• 105 gallon/point
Step 2: SOCORE Interceptor

- 75 ft length (3’ spacing)
- 12’-26’ bgs target depth (extending 2-3’ into clay formation)
- 3 SOCORE observation piezometers
- 3 – 2” temporary performance monitoring wells

Both Spheres and Cylinders
Step 2(A): Spheres deployed into **tight clays**

Technical Pearls

• We tailor SOCORE product shape/size to site specific geological features
• Smaller/spherical product used for clays and LPM:
 ➢ higher sustained release rate
 ➢ better contact with formation
 ➢ concentration gradient driven diffusion

Spheres: 20’ – 26’ bgs
2-Stage Remedial Approach

Step 2(B): Cylinder deployment into transmissive sands

Cylinders: 12’ – 20’ bgs

Technical Pearl surface area to volume ratio of cylinder shape (compared to sphere) results in lower sustained release rate, better suited to sandy formations where advective flow governs transport
GW Monitoring Data: CVOC's

![Map of monitoring locations]

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>1 year</th>
<th>2 year</th>
<th>% CVOC Reduction at 2 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>OB-1</td>
<td>1994 (ug/L)</td>
<td>124 (ug/L)</td>
<td>186 (ug/L)</td>
<td>84.4%</td>
</tr>
<tr>
<td>OB-2</td>
<td>4261 (ug/L)</td>
<td>407 (ug/L)</td>
<td>347 (ug/L)</td>
<td>91.8%</td>
</tr>
<tr>
<td>OB-3</td>
<td>4028 (ug/L)</td>
<td>163 (ug/L)</td>
<td>47 (ug/L)</td>
<td>98.8%</td>
</tr>
<tr>
<td>GW-1</td>
<td>51,439 (ug/L)</td>
<td>15,934 (ug/L)</td>
<td>5507 (ug/L)</td>
<td>89.3%</td>
</tr>
<tr>
<td>MW 3</td>
<td>455 (ug/L)</td>
<td>372 (ug/L)</td>
<td>105 (ug/L)</td>
<td>76.9%</td>
</tr>
</tbody>
</table>
Most recent data from historical monitoring wells located in target treatment area:

<table>
<thead>
<tr>
<th></th>
<th>MW-3</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCE</td>
<td>TCE</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>453</td>
<td>2.3</td>
<td>455</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>81</td>
<td>17</td>
<td>105</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MW-9</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCE</td>
<td>TCE</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>846</td>
<td>595</td>
<td>1489</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>84</td>
<td>42</td>
<td>128</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MW-10</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCE</td>
<td>TCE</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>16</td>
<td>36</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>ND</td>
<td>1.8</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>